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Abstract— Image textures, as a kind of local variations, provide
important information for the human visual system. Many image
textures, especially the small-scale or stochastic textures, are rich
in high-frequency variations, and are difficult to be preserved.
Current state-of-the-art denoising algorithms typically adopt
a nonlocal approach consisting of image patch grouping and
group-wise denoising filtering. To achieve a better image denois-
ing while preserving the variations in texture, we first adaptively
group high correlated image patches with the same kinds of
texture elements (texels) via an adaptive clustering method. This
adaptive clustering method is applied in an over-clustering-
and-iterative-merging approach, where its noise robustness is
improved with a custom merging threshold relating to the
noise level and cluster size. For texture-preserving denoising
of each cluster, considering that the variations in texture are
captured and wrapped in not only the between-dimension energy
variations but also the within-dimension variations of PCA
transform coefficients, we further propose a PCA-transform-
domain variation adaptive filtering method to preserve the local
variations in textures. Experiments on natural images show the
superiority of the proposed transform-domain variation adaptive
filtering to traditional PCA-based hard or soft threshold filtering.
As a whole, the proposed denoising method achieves a favorable
texture-preserving performance both quantitatively and visually,
especially for irregular textures, which is further verified in
camera raw image denoising.

Index Terms— Texture-preserving denoising, adaptive cluster-
ing, principal component analysis transform, suboptimal Wiener
filter, LPA-ICI.

I. INTRODUCTION

TEXTURE, as a systematic local variation of image val-
ues, is an essential component of natural visual infor-

mation reflecting the physical properties of the surrounding
environment [1]. There are two basic types of texture pattern:
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Fig. 1. The between- and within-dimension variations of PCA trans-
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• Besides of additive Gaussian noise reduction,
the proposed denoising method is applied to remove
Poisson-Gaussian noise in the camera raw image.

The rest of the paper is organized as follows.
In Section II we introduce the noise model. Section III,
IV and V are about the details of the adaptive patch clustering,
texture variation adaptive filtering for PCA coefficients and
the sliding window and aggregation technique, respectively.
Experimental results are displayed in Section VI. Finally,
conclusion is given in Section VII.

II. NOISE MODEL

The additive white Gaussian noise (AWGN) is written as:
y = x + n, (1)

where x is noise-free data, y is noisy, and n follows the normal
distribution with zero mean and variance σ 2. AWGN is signal-
independent.

Being different from AWGN, the Poisson-Gaussian noise
corrupting the camera raw images that are acquired from
digital cameras is typically signal-dependent noise. Let x be
a noise-free signal at the position c. The observed data with
Poisson-Gaussian noise can be written as:

y(c) = ρ/α + bv, (2)

where ρ ∼ P(α(x(c) − p)) is a Poisson variable with the
parameter α(x(c) − p), v follows the normal distribution
N(0, 1), and α, b, p are parameters of the Poisson-Gaussian
noise.

After applying a variance stabilization transform for the
signal-dependent Poisson-Gaussian noisy signal, we can
remove the noise using the denoising methods for additive
white Gaussian noise. One well-known variance stabi-
lization transform is called generalized Anscome trans-
form (GAT) [26], [27]. GAT can approximately transform
Poisson-Gaussian noise into additive white Gaussian noise
with unitary variance:

f (y) =

⎧⎪⎨
⎪⎩

2

√
y ′ + 3

8
+ σ ′2, y ′ > −3

8
− σ ′2

0, y ′ ≤ −3

8
− σ ′2

(3)

where y ′ = αy and σ ′ = αb.
Let x be the noise-free data, and the denoised data is

treated as E[ f (y)|x]. The exact unbiased inverse of the GAT
is defined as:

T (
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clusters according to a custom threshold. To this end, there
are two problems that need to be solved:
a) clustering a huge number of clusters requires a huge

computational burden due to the high dimensionality of
image patches;

b) finding a way to calculate a suitable merging threshold for
merging similar clusters.

For the first problem, we adopt the divide and conquer
technique [28], [29]. The divide and conquer technique is a
two-stage clustering scheme, which accelerates the K-means
clustering with improved performance: It first clusters a small
number of clusters using K-means, and then within each
cluster it performs the K-means clustering again to further
increase the cluster number.

For the second problem, we derive the merging threshold on
the distance of any two similar clusters according to the noise
level and cluster size. Specifically, we consider one special
case, where we have two similar clusters A ∈ R

M×La and
B ∈ R

M×Lb with very different sizes La � 1 and Lb = 1.
Supposing the noise variance in the center of the large cluster
A is small enough to be ignored, we further denote by ya = x
and yb = x + n the centers of A and B respectively, where
x is noise-free, and the entries n
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Algorithm 1 Adaptive Clustering Via Over-Clustering and
Iterative Merging
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detection has been used in some image denoising algorithms
such as SADCT [20] and BM3DSAPCA [8], to adaptively
detect the spatial variations of image value and collect similar
pixel samples. However, the proposed algorithm uses LPA-ICI
for signal variation detection in the PCA transform-domain.

Standard linear LPA tries to fit the signal y(n) locally with
polynomial functions of order m. Here, since we only use it
to detect variations and find neighborhood with high internal
similarity, we simply apply the zero-order polynomial fitting
(m = 0) to find a suitable window of size h (a window
containing Nh = 2h + 1 data points) where all the similar
signal in the window can be approximated by a constant
amplitude signal ŷ(n, h) = C . The computation of ŷ(n, h)
in LPA is related to the following loss function:

Jh(n) = 1

Nh

Nh∑
s=1

ρh(ns − n)(y(ns) − ŷ(n, h))2 (10)

where y(ns), 1 ≤ s ≤ Nh is the signal at the point in a window
of size h with n as its center, ρ(·) is a basic window function,
and ρh(·) = ρ(·/h)/h. For simplicity, we use the square
uniform window, where ρ(·) = 1 in [−1, 1], and ρ(·) = 0,
otherwise. So there is ρh(·) = 1/h in [−h, h], and ρ(·) = 0,
otherwise.

For a certain window size h, by minimizing the loss func-
tion, we have the estimate of y(n): ŷ(n, h) = 1

Nh

∑Nh
s=1 y(ns)

and its standard deviation std(n, h) = σ√
Nh

. So the confidence
interval of the estimate can be

D = [L, U ]
U = ŷ(n, h) + 
 · std(n, h)

L = ŷ(n, h) − 
 · std(n, h) (11)

where 
 is a threshold parameter.
Given a finite set of window size H = h1 < h2 < · · · < h J

starting from the minimum window size h1, for each window
we can use the LPA to get a estimate ŷ(n, hi ) and a corre-
sponding standard deviation std(n, hi ), thereby determining a
sequence of the confidence intervals D(i), 1 ≤ i ≤ J of the
biased estimates:

D(i) = [Li , Ui ]
Ui = ŷ(n, hi ) + 
 · std(n, hi )

Li = ŷ(n, hi ) − 
 · std(n, hi ) (12)

The ICI technique considers the optimal h to be the
maximum window length satisfying Li < Ui , where <U i
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Fig. 11. Denoising the Stream image at σ = 25 with image details in the zoomed areas (red boxes): (a) Stream image, (b) Noisy block, (c) BM3D,
(d) BM3DSAPCA, (e) WNNM, (f) SLRD, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

Fig. 12. Performance comparison on the red channel of Baboon image with image details in the zoomed areas (red boxes): (a) The red channel, (b) Noisy
block (α = 200), (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

Fig. 13. Performance comparison on the blue channel of Lena image with image details in the zoomed areas (red boxes): (a) The blue channel, (b) Noisy
block (α = 400), (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) DnCNN-S, (h) SGHP, (i) AC-PT, (j) ACVA, (k) Noise-free block.

As for the visual texture-preserving performance, ACVA
also outperforms the state-of-the-art denoising algorithms.
Figs. 12-13 compare the bottom-left corner of the denoising
results of image Baboon and Lena. From the zoom-in area,
the proposed method outperforms other methods in restoring
the special textures of the fur (in Fig. 12) and doorframe
(in Fig. 13). In addition, as shown in [46], EFBMD is

also inferior to ACVA in preserving the fur texture at the
bottom-left corner of image Baboon.

2) Denoising on Real RAW Images: The RAW image of size
3744×5616 is captured by a Canon EOS 5D Mark II. We cut
down a 402 × 402 square from the raw image for denoising
tests. The noise parameters (α and b) in Poisson-Gaussian
noise model are estimated by the method in [26]. We assume
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Fig. 14. Denoising the real camera raw image with image details in the zoomed areas (red boxes): (a) Noisy image, (b) Small sample cut down from the
blue square, (c) BM3D, (d) BM3DSAPCA, (e) NCSR, (f) WNNM, (g) SLRD, (h) DnCNN-S, (i) SGHP, (j) AC-PT, (k) ACVA.

the noise level is invariant across the whole image. To avoid
over-estimate of noise level, we select the top-left 200 × 200
flat area, estimate its R, G1, G2, B subimage separately, and
adopt the minimum estimates of α and b, respectively. After
applying the GAT on the RAW image based on the estimated
parameters, we denoise the real camera raw image using
the considered algorithms directly. To visualize the denoised
image, we adopt the method in [47] to transform the results
into RGB images.

Fig. 14 shows that ACVA protects zoom-in details (such
as singular points and textures) best compared with other
algorithms. Specifically, we can also find that there is a
noisy black dot mistakenly preserved by AC-PT. And serious
color distortion can be observed in the results by SGHP
and DnCNN-S, while BM3D, BM3DSAPCA, NCSR, SLRD,
and WNNM just blur the isolated white points and brown
texture. The serious color distortion by DnCNN-S implies that
this state-of-the-art deep learning based denoising algorithm
distorts heavily the special textures resulted from the CFA,
and how to control this kind of distortion remains an unsolved
problem.

VII. CONCLUSIONS

In this paper, we have proposed a texture-preserving non-
local denoising algorithm ACVA. In ACVA, an adaptive clus-
tering method is designed to adaptively and robustly cluster
similar patches. A state-of-the-art PCA-based denoising filter
is proposed in a transform-domain texture variation adaptive
filtering approach to perform a texture-preserving denoising of
each cluster. The denoising performance of ACVA is further
improved via a sliding window and aggregation approach.
When compared with the existing PG techniques (especially
the adaptive clustering method in AC-PT), the proposed adap-
tive clustering method achieves more robust performance at the
high noise level. Meanwhile, the proposed DF shows superior
denoising performance to other PCA (or SVD) based DFs.

ACVA achieves satisfactory texture-preserving Gaussian
denoising performance both quantitatively and visually. Espe-
cially on images with irregular textures, ACVA can outperform
all the other denoising algorithms tested here in terms of

PSNR, SSIM and FSIM results. The noise removal results
for camera raw images containing special textures of CFA
further verify ACVA’s excellent texture-preserving Poisson-
Gaussian denoising performance for real application, while the
deep learning based denoising algorithm DnCNN works [43]
poorly on the real images with CFA patterns that have irregular
or stochastic textures. The future work will explore potential
benefits of ACVA for improving the overall performance in
processing low SNR and low contrast images with irreg-
ular textures, such as OCT vessel images [23], low-dose
X-ray vessel images [48]–[50] and fluorescence microscopy
images [51], [52].
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