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super-resolution (HR or SR) reconstruction recover a SR image from
a single or multiple acquired low-resolution images to improve or
enhance the visibility of image details [1–9]. The main drawback
of multiple image SR is that acquiring multiple images of the same
object is often difficult, if not impossible in certain situations. Fur-
thermore, the multiple image SR is highly dependent on the estima-
tion accuracy of the motions between the multiple LR observations
by image registration [10], which gets more unstable and difficult
in real-world applications due to the different objects in the same
clinical scene having different and complex motions [11]. For these
reasons, most recent works advocate the use of single image SR for
MR imaging. Obviously, it is more challenging.

Currently, there are three categories of single image SR methods
with their advantages and limitations: interpolation-based [12–17],
reconstruction-based [8,9,19–23], andexample learning-basedmeth-
ods [25–30]. Note that ideas of methods in different categories might
have been combined. For instance, some interpolation-based [17]
methodsmightalso involvethestrategiesofreconstruction-basedand
learning-based methods. Interpolation methods are straightforward
and widely exploited in signal processing and medical imaging [12].
They directly project (or up-sample) the initial LR image onto an
HR grid and estimate the missing pixel values using parametric and
nonparametric interpolationfunctions, suchasbicubic,B-spline inter-
polation function and edge-directed interpolation [18]. Traditionally,
interpolation of medical imaging datasets to higher image resolution
has not been thought of as a possible way for potentially increas-
ing anatomical detail. However, recent researches [13] indicate that
conventional interpolation method can be successfully applied to dif-
fusion weighted imaging datasets for mining anatomical details that
are normally seen only at higher resolutions. Usually, the interpo-
lation functions assume some smoothness prior in the image space,
which are not valid in inhomogeneous areas. Hence conventional
interpolation methods usually result in blurred edges and textures
as well as artifacts in lines. To solve these problems, some recent
state-of-the-art interpolation methods have been proposed in SR,
using edge-guided nonlinear interpolation (EGNI) [14] to preserve
sharp edges and reduce ring artifacts, employing reproducing kernel
Hilbert space [15] to estimate coefficients of the basis and redun-
dant functions for SR images at any finer grids, or using steering
kernel regression [16] as well as local structure prior [17] to con-
struct the image interpolation model. However, these methods may
introduce edge diffusion or haloing artifacts in the recovered images.
Usually, these new methods enhance the single image SR perfor-
mance but sacrifice the computational efficiency and simplicity that
conventional interpolation methods have. For instance, although the
resulting SR image by smooth regression or nonlinear interpolation
based method is pleasing, there exists huge computational overhead
because all the smooth kernel regression [16] or edge-guided nonlin-
ear interpolation [14] have to be iteratively calculated for each pixel
of input LR image.

Reconstruction-based SR methods are based upon imaging degra-
dation model and solve an ill-posed inverse problem of deblurring,
up-sampling, and denoising for a SR image. To reduce edge artifacts
and estimate the SR detail, reconstruction-based SR methods incor-
porate the constraints or the prior knowledge to model a regularized
cost function with a data-fidelity term in optimization. The data-
fidelity termusuallypenalizes thedifferencebetweenthedegradedSR
image and observed LR image, while the typical regularization terms
in the cost function include edge gradient [19], patch-based nonlocal
regularization [8], structure-preserving constraint [9], total-variation
(TV) regularization [20–22], low rank regularization [22], and non-
local steering kernel regression based regularization [23]. However,
reconstruction-based SR algorithms are still clumsy at introducing
important high-frequency details into the output SR image when
solving the computationally hard optimization problems. Generally,
the unavoidable blur generated by the initial interpolation together

with the lack of high-frequency details in the LR input image limits
their effectiveness to small magnification factors, their performance
degrades rapidly if the magnification factor is large [24].

The example learning-based algorithms utilize different machine
learning techniques [25–30] to learn the mapping relationship
between the LR and SR image patches from external low- and high-
resolution exempla pair in training datasets and then transform the
input LR image into the desired SR image using this priori knowl-
edge. The learnt relationship between SR and LR training details sets
the quality of the SR image. Therefore, training data needs to be
relevant and large enough to learn useful structures for the kind
of input LR image. However, these methods are usually computa-
tionally expensive and can produce obvious artifacts and unwanted
noises into the synthesized SR image if with unsuitable training
samples.

Integrating advantages of computational efficiency, reconstruc-
tion fidelity and large magnification ratio, as well as without using
external training data, in this paper we propose a novel and fast sin-
gle image SR method for MRI, namely low-frequency k-space data
estimation (LFE for short). On the one hand, it adopts the reconstruc-
tion consistency constraints in an average imaging model to ensure
consistency between the reconstructed SR images and the input SR
image; on the other hand, it utilizes a weighted complex-valued mod-
ulation function in frequency domain expressing the intrinsic link in
k-space between a given (modulus) LR MR image and the desired SR
MR image, which enables us to increase resolution with large mag-
nification ratio. More specifically, in the single image SR MRI, a pixel
(or voxel) of LR images is equivalent to averaging pixels (or voxels)
of the SR image. This averaging nature determines that the LR image
preserves well low-frequency components but erases high-frequency
components of the SR image. Therefore, as long as the low-frequency
k-space data of the SR image can be obtained from LR images, the
SR image can then be reconstructed by means of partial k-space
image reconstruction techniques such as zero filling the non-acquired
k-space data. This strategy enables us to have a more rapid and
efficient SR method while largely reducing ringing artifact problem
compared with the SR method solely based on zero-filling (ZF) [31]
in the Fourier space.

This fundamentally different SR method is based on first
estimating, from a single spatial modulus LR image, the low-
frequency k-space data of the desired SR image, and then reconstruct-
ing the latter by simply inverse Fourier transform of the partially
weighted k-space data formed of the estimated low-frequency and
zero-filled high-frequency k-space data. Without producing the edge
diffusion, haloing and blocking artifacts, the proposed weighted k-
space data-based method is much more stable and rapid than the
edge-guided interpolation-based [14] and TV [20,21] regularization-
based methods. The rest of this paper is organized as follows.
Section 2 presents the proposed LFE method. Experimental results
and analysis are presented in Section 3. Finally, Section 4 concludes
the paper.

2. Methods

2.1. Theory of low-frequency estimation

First note that in what follows all the images in question
are discrete images. An observed LR MR image gl(i, j), i, j ∈ wl =
{0, 1, . . . , N − 1} can be considered resulting from a desired SR MR
image g(i, j), i, j ∈ w = {0, 1, . . . , sN − 1} via averaging process with
a magnification factor s. The latter designates s times the resolution
(e.g., s = 2 means that the image size goes from N × N to 2N ×2N). In
other words, the value of gl(i, j) at a pixel is the average of g(si+a, sj+b)
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in a s × s neighborhood. The link between the LR and SR images can
mathematically be formulated as

gl(i, j) =
1
s2

s−1∑
a=0

s−1∑
b=0

g(si + a, sj + b) (1)

where a, b ∈ {0, 1, . . . , s−1} are the relative positions in the neighbor-
hood along x− and y− axes, respectively.

The k-space or spectral data of the SR image g(i, j), i, j ∈
{0, 1, . . . , sN − 1} is given by

G
(
ki, kj
)

= F [g(i, j)] , ki, kj ∈
{
− sN

2
, − sN

2
+ 1, . . . ,

sN
2

− 1
}

(2)

where F[ • ] designates Fourier transform.
The k-space data of the SR image g(i, j) in the low-frequency

space ki, kj ∈
{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

can be expressed as (see the
derivation details in appendix)

G
(
ki, kj
)

=F [g(i, j)] , ki, kj ∈
{
− N

2
, − N

2
+ 1, . . . ,

N
2

− 1
}

=
N−1∑
i=0

e
−2piki

√−1
N

s−1∑
a=0

e
−2paki

√−1
sN

×
⎡
⎣N−1∑

j=0

[
s−1∑
b=0

g (si + a, sj + b) e
−2pbkj

√−1
sN

]
e

−2pjkj
√−1

N

⎤
⎦ (3)

In the above equation, g(si + a, sj + b) with a, b ∈ {0, 1, . . . , s − 1}
and i, j ∈ {0, 1, . . . , N − 1} represents the gray-level value at a pixel
and 1

s2

∑s−1
a=0
∑s−1

b=0 g(si + a, sj + b) the averaged gray-level value
in a neighborhood of the desired unknown SR image. According to
Eq. (1), such averaged value of the SR image is equal to the LR image
pixel value gl(i, j), i, j ∈ {0, 1, . . . , N − 1}. We now back-project a pixel
value of the LR image gl(i, j) to a neighborhood of the SR image to
have an approximate estimation of the pixel value of the SR image in
that neighborhood. We then have

g(si+a, sj+b) ≈ gl(i, j), ∀a, b = 0, 1, . . . , s−1 and i, j = 0, 1, . . . , N−1

(4)

Thus, to estimate the k-space data of the desired G(ki, kj) in
the low-frequency space ki, kj ∈

{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

(of size
N×N), we use Eq. (4) to approximate g(si+a, sj+b) by the pixel value
of the LR image gl(i, j) in Eq. (3). The low-frequency k-space data of
the SR image g(i, j) can then be approximately expressed as (see the
derivation details in appendix)

G
(
ki, kj
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e
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⎠Gl
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2
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N
2
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(5)

where

Gl
(
ki, kj

)
=

N−1∑
i=0

N−1∑
j=0

e
−2p(iki+jkj )

√−1
N gl(i, j), ki, kj ∈

{
− N

2
, − N

2
+ 1, . . . ,

N
2

− 1
}

(6)

which represents the k-space data of the LR image.
The approximation in Eq. (5) comes from the approximation in

Eq. (4). Such approximation is somewhat like the idea of data consis-
tency. It consists in regarding a pixel value of the observed (known)
LR image as the averaged value of the desired (estimated) SR image in
SR reconstruction. Eq. (5) shows that the low-frequency k-space data
ki, kj ∈

{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

of the desired SR image g(i, j) can be
estimated from the k-space data Gl(ki, kj) of the observed LR image
after modulation by some function. By denoting this function as

Ws
(
ki, kj
)

=

(
s−1∑
a=0

e
−2paki

√−1
sN

)(
s−1∑
b=0

e
−2pbkj

√−1
sN

)
,

ki, kj ∈
{
− N

2
, − N

2
+ 1, . . . , − N

2
− 1
}

(7)

the k-space data in the low-frequency space ki, kj ∈{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

of the super-resolved SR image is then
given by

G
(
ki, kj
) ≈ Ws

(
ki, kj
)

Gl
(
ki, kj
)

, ki, kj ∈
{
− N

2
, − N

2
+ 1, . . . ,

N
2

− 1
}
(8)

Ws(ki, kj) is a complex-valued function. Its modulus and phase are
illustrated in Fig. 1. The estimation error of the k-space data of the SR
image in the low frequencies ki, kj ∈

{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

using
Eq. (8) stems from the fact that the gray-level value of the SR image
has been replaced by the averaged value in a neighborhood. Such
neighborhood averaging suppresses high-frequency components but
in general does not alter seriously low-frequency components of the
SR image. Therefore, the average value replacing will induce only
small estimation errors on low-frequency k-space data.

2.2. Reconstruction method

Based on the theory of low-frequency k-space data estimation pre-
sented above, we now show how to reconstruct a desired SR image
g(i, j), i, j ∈ w from an observed LR image gl(i, j), i, j ∈ {0, 1, . . . , N − 1}.
Keep in mind that the k-space data of the SR image is G(ki, kj),

ki, kj ∈ Y =
{
− sN

2 , − sN
2 + 1, . . . , sN

2 − 1
}
. According to Eq. (8),

its k-space data (estimated) in the low-frequency subspace

Yl =
{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

is given by Ws(ki, kj)Gl(ki, kj), but its
k-space data in the high-frequency subspace ki, kj /∈ Yl is missing.
Therefore, to reconstruct the SR image, we fill the high-frequency
k-space Y−Yl with zeros, thus leading to the following full k-space
data of the SR image g(i, j), i, j ∈ w

G
(
ki, kj
)

SINC
(
ki, kj
) ≈
{

Gl
(
ki, kj
)

Ws
(
ki, kj
)

, ki, kj ∈ Yl

0, ki, kj ∈ Y − Yl
(9)

with

SINC
(
ki, kj
)

=

{
1, ki, kj ∈ Yl

0, ki, kj ∈ Y − Yl
(10)

The SR image g(i, j), i, j ∈ w can finally be approximately recon-
structed by

g(i, j) ≈ F−1 [G (ki, kj
)

SINC
(
ki, kj
)]

, i, j ∈ w (11)

where F−1[ • ] designates inverse Fourier transform.
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Fig. 1. The modulus (top row) and phase (bottom row) maps of the modulation function Ws(ki , kj) for three different values of the magnification factor s = 2, 3, 4 (from left
to right).

Eq. (11) shows that we can very simply reconstruct a desired
SR image by inverse Fourier transform of the k-space data formed
of the estimated low-frequency and zero-filled high-frequency k-
space data. Therefore, it is extremely simple and rapid. We call such
approximate reconstruction the LFE method, since it is essentially
based on low-frequency k-space data estimation.

It is important to underline that the product Gl(ki, kj)Ws(ki, kj)
in Eq. (9) is fundamentally different from the apodization windows
often used in MRI to reduce Gibbs ringing (i.e., truncation artifacts).
Indeed, any (real-valued) smooth apodization window function
(e.g. Hamming or Hanning window) can be used to multiply it with
the acquired k-space data, but this is at the cost of reducing resolu-
tion because the windowing function destroys original k-space data.
In contrast, the modulation function in Eq. (9) is not an arbitrary
smoothing function; it is a complex-valued function that is different
following the magnification factor s (in Eq. (7)). The modulation func-
tion expresses the intrinsic link in k-space between a given (modulus)
LR image and the desired SR image (Eq. (8)), which enables us to
increase resolution.

Fig. 2 schematizes the process of reconstructing an SR image g(i, j)
from a given LR image gl(i, j) through estimating the low-frequency
k-space data Ws(ki, kj)Gl(ki, kj) of g(i, j) and using inverse Fourier
transform.

3. Experiments and results

To evaluate the proposed LFE method, digital phantom images,
physical phantom MR images and real brain MR images were used.
The digital phantom image is Sheep-Logan head image of size 256 ×
256, to which we add Gaussian noises of different levels from 1 to
15. The Gaussian noises have zero mean and the standard devia-
tions (STD) being changed in the range of 1/255, 2/255, . . . , 15/255,
i.e., noise level 1 is equal to STD = 1/255, noise level 2 is equal

to STD = 2/255, etc. Note that adding noise to the spatial image
is equivalent to adding the noise to k-space data according to the
principle of Fourier transform (or mimicking the remained noise in
the k-space). The real brain MR images contain eight volumes: three
volumes from our laboratory and five volumes corresponding to case
1 to case 5 of the MRI public datasets [33]1. The three MRI volume
sets with voxel resolution 1.0×1.0×1.0 represent respectively trans-
verse, coronal and sagittal volumes of 256 slices with size 256 × 256.
The five public datasets represent five transverse volumes (pixel res-
olution 0.9375 × 0.9375, slice thickness 1.3 mm, 124 slices of size
256 × 256).

The proposed method was also compared with the aforemen-
tioned ZF [31], EGNI [14] and TV [20–22] methods. The ZF SR method
consists of first taking the initial k-space data of the original LR
image as the low-frequency k-space data of the desired SR image,
filling zeros in the high-frequency k-space of the latter, regarding
the so obtained k-space data as the full k-space data of the desired
SR image, and taking inverse Fourier transform of the full k-space
data to obtain the SR image. So, the ZF SR method amounts to taking
Ws(ki, kj) = 1, ki, kj ∈ Yl in Fig. 2.

The EDNI [14] is a representative SR interpolation method based
on directional filtering and data fusion. In this method, for a pixel
to be interpolated, two observation sets are defined in two orthogo-
nal directions, and each set produces an estimate of the pixel value.
Such interpolation technique can preserve edge sharpness and avoid
ringing artifacts. In all the simulation experiments, LR images were
obtained by merging 4 neighboring pixels of the reference image.

The TV method [20–22] is based on the following regularization.
Let a desired SR MR image g(i, j), i, j ∈ w = {0, 1, . . . , sN − 1} to

1 http://www.spl.harvard.edu/publications/item/view/541

http://www.spl.harvard.edu/publications/item/view/541
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Fig. 3. Variation of PSNRs in dB (left) and SSIM (right) as a function of noise level of SR images reconstructed using the EGNI, ZF, TV and LFE methods.

method looks blurred (Fig. 5 (g)), the ZF method displays ringing arti-
facts (Fig. 5 (h)), the TV method yields over-smoothing and blocking
effect in particular on the raster (Fig. 5 (i)), and the LFE (Fig. 5 (j)) gen-
erates the best quality image showing a rather clean aspect without
blurring and largely reduced ringing artifacts. This visual assessment
is clearly confirmed in the image error maps (Fig. 5 (k)–(n)), among
which the image errors induced by the proposed LFE method (Fig. 5
(n)) are not only the smallest but also demonstrate the least visible
object structures.

3.3. Reconstruction results on real brain MR images

We have applied different SR methods to the eight real brain
volumes mentioned above. Figs. 6 to 8 and Table 2 represent the
results on the transverse slices of the in-house data. Table 3 gives

the comparison between different SR methods on the eight real brain
volumes in terms of PSNRs and SSIMs.

Fig. 6 gives the super-resolution reconstruction results on the real
brain axial MR images presenting variable anatomical structures, in
which the PSNR and SSIM curves of the SR images reconstructed by
the EGNI, ZF, TV and LFE methods are plotted as a function of slices.
By fixing any slice, we observe that the PSNR of the LFE method is
always clearly higher than that of the TV method but largely higher
than that of the EGNI or ZF method. The TV method has better PSNR
performance than the EGNI and ZF methods that have rather close
PSNR values. The EGNI method is nevertheless slightly better than
the ZF method. Across all the slices, the LFE method always keeps
higher PSNR whatever the variation in anatomical structure of the
slices. This is confirmed in terms of SSIM criterion, the LFE always
having the highest SSIM value.

a) b) c) d) e)

j)i)h)g)f)

k) l) m) n)

Fig. 4.
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a) b) c) d) e)

j)i)h)g)f)

k) l) m) n)

Fig. 7. Super-resolution reconstruction results on the 100th slice reference image. (a) Reference image. (b)–(e) represent the SR images obtained using respectively the EGNI, ZF,
TV and LFE methods. (f)–(j) are the zoomed versions of the boxed regions in (a)–(e), respectively. The corresponding image errors between the reconstructed SR images ((b)–(e))
and the reference image ((a)) are given in (k)–(n).

a) b) c)

e)d)

g)f)

i) j)

h)

Fig. 8. Super-resolution reconstruction with higher magnification factors. (a) Initial image of size 204 × 176. (b) to (e) represent the regions as boxed in (a) of the SR images
with a magnification factor of 2, which were reconstructed using respectively the EGNI, ZF, TV and LFE methods. (f) A smaller boxed region of the same image as in (a). (g) to (j)
represent the regions as boxed in (f) of the SR images reconstructed using respectively the EGNI, ZF, TV and LFE methods, which correspond to a magnification factor of 4.

Table 2
Computation time in seconds for the first five SR image experiments.

Methods 1 2 3 4 5

EGNI 39 160 39 159 789
ZF 0.003 0.016 0.004 0.015 0.078
TV 0.86 3.5 0.82 3.5 8.90
LFE 0.003 0.016 0.005 0.018 0.083

Table 2 lists the overall computational efficiency of EGNI, ZF,
TV and LFE methods in the first five SR image experiments. All
the methods are operated on a PC of Intel Core i5-4460 Quad-Core
3.2 GHz CPU with 4 GB memory. ZF and LFW methods similarly
have the fastest computational speed, while the TV method spends
less computation time than the EGNI method which runs the most
expensive computations.
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Table 3
PSNRs and SSIMs for the eight SR image experiments.

Cases PSNR SSIM

EGNI ZF TV LFE EGNI ZF TV LFE

1 29.0602 29.3056 30.6283 30.8036 0.9816 0.9817 0.9907 0.9913
2 28.7750 28.9821 29.9099 30.0607 0.9892 0.9880 0.9920 0.9925
3 29.5882 30.0161 31.2284 31.4380 0.9797 0.9815 0.9895 0.9902
4 29.5255 30.0043 31.3300 31.6244 0.9783 0.9815 0.9899 0.9908
5 28.9796 29.1264 30.4487 30.6215 0.9806 0.9782 0.9891 0.9899
6 25.6576 26.3935 29.1219 29.5618 0.9598 0.9685 0.9811 0.9925
7 23.2625 23.6571 26.6679 27.2574 0.8953 0.9132 0.9712 0.9891
8 25.9609 26.7609 28.3118 29.1991 0.9775 0.9844 0.9820 0.9930

Table 3 shows that the LFE method achieves the highest PSNR and
SSIM as well as the best performance for all eight volumes whatever
the variation of anatomical structures.

We now examine the effect of reconstruction of different SR
methods on the consistency of the reconstructed (in the transverse
direction) images in the sagittal (Fig. 9 (b)–(e)) and coronal (Fig. 9
(l)–(o)) directions by displaying the reconstructed images in these
different directions. It is interesting to note that only the proposed
method has preserved the inter-slice consistency in the sagittal and
coronal directions. The zoomed versions (Fig. 9 (g)–(j) and (q)–(t))
of the slices (Fig. 9 (b)–(e) and (l)–(o)) clearly show that the EGNI
and ZF methods generated visible horizontal strips (Fig. 9 (g)–(h) and
(q)–(r)) due to their inherent blurring and ringing artifacts. The TV
method yielded blocking artifacts and staircase edges (Fig. 9 (i), (s)).
The proposed LFE (Fig. 9 (j), (t)) gave the best highly-resolved detail
image with largely reduced ringing artifacts.

4. Discussion and conclusions

The phenomenon of inter-slice inconsistency can be explained
as below. Interpolation-based methods (such as EGNI method) pro-
duce interpolation errors within in-plane slice (i.e. in transverse slices
in the present study), which result in the inconsistency across the
sagittal or coronal dimension. The ZF method suffer from severe
ringing artifacts within in-plane slice, which leads to important incon-
sistency in the inter-slice dimension. As for the TV method, the
TV-based minimization regularization enforces in general local spa-
tial consistency within in-plane slice and consequently introduces the
piecewise blocking artifact visible in the sagittal or coronal direction.
In contrast, although also implementing zero-padding in the high fre-
quencies, the proposed LFE method is recovering the low-frequency
components of the desired SR image from the k-space of the given
LR image whereas windowing k-space data in the ZF method is not

a) b) c) d) e)

j)i)h)g)f)

k) l) m) n) o)

t)s)r)q)p)

Fig. 9. Transverse super-resolution results displayed in the sagittal and coronal view. (a) Reference image. (b)–(e) represent the sagittal view of the transverse SR images obtained
using respectively the EGNI, ZF, TV and LFE methods. (f)–(j) are the zoomed versions of the boxed regions in (a)–(e), respectively. (k) reference image. (l)–(o) represent the coronal
view of the transverse SR images obtained using respectively the EGNI, ZF, TV and LFE methods. (p)–(t) are the zoomed versions of the boxed regions in (k)–(o), respectively.
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generating any low-frequency components of the desired SR image.
This explains why the LFE method yields much higher image quality
than the ZF method, which leads to the high spatial consistency of
the LFE method in the inter-slice direction. Inversely speaking, the
high inter-slice consistency demonstrates the good SR quality of the
proposed LFE method.

The results demonstrated that estimating the low-frequency k-
space data of the desired SR image from a single spatial modulus LR
image is an effective way to obtain a fast, robust and efficient sin-
gle image SR method allowing achieving not only good in-plane SR
image quality but also high inter-slice spatial consistency.

With the proposed SR reconstruction, the resulting super-
resolved image is somewhat bandlimited in the sense that the high-
frequency k-space is zero-filled. Further improvement could then be

achieved if high-frequency k-space data in this k-space can be appro-
priately recovered. Also, the extension of the proposed SR idea to
three-dimensional (3D) images can be envisaged.
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Appendix

1. The k-space data of the SR image g(i, j), i, j ∈ {0, 1, . . . , sN−1} in the low-frequency space ki, kj ∈
{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}
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2. To estimate the k-space data of the desired G(ki, kj) in the low-frequency space ki, kj ∈
{
− N

2 , − N
2 + 1, . . . , N

2 − 1
}

(of size N × N), we
replace g(si + a, sj + b) with a, b ∈ {0, 1, . . . , s − 1} and i, j ∈ {0, 1, . . . , N − 1} by its approximate value equal to the pixel value of the LR image
gl(i, j), i, j ∈ {0, 1, . . . , N − 1}. The low-frequency k-space data of the SR image g(i, j) can then be approximately expressed as:
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