

12 17., ſ 8,9,19 23, 25 30. 17, l l l 12. l () Ý 18,. 13, 11 Ϊ, () 14 Ϋ́Υ 15, 16, 17, $\left| \right\rangle$ 16, 14,

, 1 19., 8.. 9. . (20 22, 22,) ١ŕ٢ 23,. , ١ . 1 ١ l 1

1.

2. Methods

2.1. Theory of low-frequency estimation

 $g_l(i,j), i,j \in \chi_l =$. A ٠, $\{0, 1, \ldots, N-1\}^{1}$ $g(i,j), i,j \in \chi = \{0, 1, \dots, sN-1\}$ V^{\prime} l S s. (1, ..., s = 2)l Ί, $N \times N = 2N \times 2N$). l $g_l(i,j)$ l g(si+a,sj+b)1. , Ľ 1

$$g_l(i,j) = \frac{1}{s^2} \sum_{a=0}^{s-1} \sum_{b=0}^{s-1} g(si+a,sj+b)$$
(1)

$$G(k_i, k_j) = \mathcal{F}_{g(i,j)}, \quad k_i, k_j \in \left\{-\frac{sN}{2}, -\frac{sN}{2} + 1, \dots, \frac{sN}{2} - 1\right\}$$
(2)

$$k_{i}, k_{j} \in \left\{-\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1\right\}^{q(i,j)}$$

$$G(k_{i},k_{j}) = \mathcal{F}_{j}g(i,j), \quad k_{i},k_{j} \in \left\{-\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1\right\}$$
$$= \sum_{i=0}^{N-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \sum_{a=0}^{s-1} e^{\frac{-2\pi a k_{i}\sqrt{-1}}{sN}}$$
$$\times \left[\sum_{j=0}^{N-1} \left[\sum_{b=0}^{s-1} g\left(si + a, sj + b\right) e^{\frac{-2\pi b k_{j}\sqrt{-1}}{sN}}\right] e^{\frac{-2\pi j k_{j}\sqrt{-1}}{N}}\right]$$
(3)

$$g(si + a, sj + b) = a, b \in \{0, 1, \dots, s - 1\}$$

$$\frac{1}{s^2} \sum_{a=0}^{s-1} \sum_{b=0}^{s-1} g(si + a, sj + b)$$

$$(1), \qquad g_l(i,j), i, j \in \{0, 1, \dots, N - 1\}.$$

 $g(si+a,sj+b) \approx g_i(i,j), \ \forall a,b=0,1,...,s-1$, i,j=0,1,...,N-1(4)

 $G_l(k_i, k_j) = \sum_{i=0}^{N-1} \sum_{i=0}^{N-1} e^{\frac{-2\pi (ik_i + jk_j)\sqrt{-1}}{N}} g_l(i, j), \ k_i, k_j \in \left\{-\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1\right\}$ (6)

 $g_{l}(i,j) = \frac{1}{s^{2}} \sum_{a=0}^{s-1} \sum_{b=0}^{s-1} g(si + a, sj + b)$ (1) $a, b \in \{0, 1, \dots, s-1\}$ $\{0, 1, \dots, sN - 1\}$ $g(i,j), i, j \in \{0, 1, \dots, sN - 1\}$

$$W_{s}(k_{i},k_{j}) = \left(\sum_{a=0}^{s-1} e^{\frac{-2\pi ak_{i}\sqrt{-1}}{sN}}\right) \left(\sum_{b=0}^{s-1} e^{\frac{-2\pi bk_{j}\sqrt{-1}}{sN}}\right),$$

$$k_{i},k_{j} \in \left\{-\frac{N}{2}, -\frac{N}{2}+1, \dots, -\frac{N}{2}-1\right\}$$
(7)

$$G(k_{i},k_{j}) \approx W_{s}(k_{i},k_{j}) G_{l}(k_{i},k_{j}), \quad k_{i},k_{j} \in \left\{-\frac{N}{2},-\frac{N}{2}+1,\ldots,\frac{N}{2}-1\right\}$$
(8)

$$W_{s}(k_{i},k_{j}) = 1.$$

$$k_{i},k_{j} \in \left\{-\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1\right\}.$$

$$(8)$$

$$-\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1\right\}.$$

2.2. Reconstruction method

 $g(i,j), i, j \in \chi, \qquad g_l(i,j), i, j \in \{0, 1, \dots, N-1\}, \\ G(k_i, k_j), \\ k_i, k_j \in \Omega = \left\{ -\frac{sN}{2}, -\frac{sN}{2} + 1, \dots, \frac{sN}{2} - 1 \right\}, \\ \Lambda, \qquad (8), \\ \Omega_l = \left\{ -\frac{lN}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1 \right\}, \\ W_s(k_i, k_j)G_l(k_i, k_j), \\ k_i, k_j \notin \Omega_l \\ Q_l = \left\{ -\frac{lN}{2}, -\frac{N}{2} + \frac{lN}{2} + \frac{lN}{2} - \frac{lN}{2} + \frac{lN}{2} - \frac{lN}{2} + \frac{lN}{2} - \frac{lN}{2} - \frac{lN}{2} + \frac{lN}{2} - \frac{l$

$$G(k_i, k_j) = (k_i, k_j) \approx \begin{cases} G_l(k_i, k_j) W_s(k_i, k_j), & k_i, k_j \in \Omega_l \\ 0, & k_i, k_j \in \Omega - \Omega_l \end{cases}$$
(9)

$$(k_i, k_j) = \begin{cases} 1, & k_i, k_j \in \Omega_l \\ 0, & k_i, k_j \in \Omega - \Omega_l \end{cases}$$
(10)

$$g(i,j), i,j \in \chi$$

$$g(i,j) \approx \mathcal{F}^{-1} \left[G\left(k_i, k_j\right) \qquad (k_i, k_j) \right], \ i,j \in \chi$$
(11)

$$\mathcal{F}^{-1} \cdot \ldots \cdot \mathcal{F}^{-1} \cdot$$

3. Experiments and results

256, 15. () 1/255,2/255,...,15/255, ..., 1/255, 2 $= 2/255, \qquad ($

 $W_{s}(k_{i},k_{j}) = 1, k_{i}, k_{j} \in \Omega_{l}$ $20, 22, \dots, 14, \dots$

 $(1, 2, 5(1)), \dots, (1, 2, 5(1)), \dots, (1,$

3.3. Reconstruction results on real brain MR images

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

 Fig. 7.
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100

 Fig. 8.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .</

Table 2					
			1 - p	• • • •	
	1	2	3	4	5
1	39	160	39	159	789
	0.003	0.016	0.004	0.015	0.078
	0.86	3.5	0.82	3.5	8.90
· · · · ·	0.003	0.016	0.005	0.018	0.083

Table 3	
---------	--

and the second second

1	n - 1 - n							
	N			- 1 4	$\mathbf{v} \in \mathcal{V}$			- 1 A
1	29.0602	29.3056	30.6283	30.8036	0.9816	0.9817	0.9907	0.9913
2	28.7750	28.9821	29.9099	30.0607	0.9892	0.9880	0.9920	0.9925
3	29.5882	30.0161	31.2284	31.4380	0.9797	0.9815	0.9895	0.9902
4	29.5255	30.0043	31.3300	31.6244	0.9783	0.9815	0.9899	0.9908
5	28.9796	29.1264	30.4487	30.6215	0.9806	0.9782	0.9891	0.9899
6	25.6576	26.3935	29.1219	29.5618	0.9598	0.9685	0.9811	0.9925
7	23.2625	23.6571	26.6679	27.2574	0.8953	0.9132	0.9712	0.9891
8	25.9609	26.7609	28.3118	29.1991	0.9775	0.9844	0.9820	0.9930

4. Discussion and conclusions

Acknowledgments

	4 '1 22, 2015), . 61271320) (20	A 14 29),
A 2013340	-A	ΑΑ
, , , M2013340.		

Appendix

1. $g(i,j), i,j \in \{0, 1, \dots, sN-1\}$

$$-, ., ..., k_i, k_j \in \left\{-\frac{N}{2}, -\frac{N}{2}+1, \dots, \frac{N}{2}-1\right\},$$

$$\begin{split} G\left(k_{i},k_{j}\right) &= \mathcal{F}_{j}g(i,j), \quad k_{i},k_{j} \in \left\{-\frac{N}{2},-\frac{N}{2}+1,\ldots,\frac{N}{2}-1\right\} \\ &= \sum_{i=0}^{SN-1}\sum_{j=0}^{SN-1}g(i,j)e^{\frac{-2\pi(ik_{i}+jk_{j})\sqrt{-1}}{SN}} \\ &= \sum_{i=0}^{SN-1}e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[g(i,sj)e^{\frac{-2\pi sk_{j}\sqrt{-1}}{SN}}+\ldots+g\left(i,sj+s-1\right)e^{\frac{-2\pi (sj+s-1)k_{j}\sqrt{-1}}{SN}}\right]\right] \\ &= \sum_{i=0}^{SN-1}e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[g(i,sj)+\ldots+g\left(i,sj+s-1\right)e^{\frac{-2\pi (sj-s)k_{j}\sqrt{-1}}{SN}}\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right] \\ &= \sum_{i=0}^{SN-1}e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[\sum_{b=0}^{s-1}g(i,sj+b)e^{\frac{-2\pi bk_{i}\sqrt{-1}}{SN}}\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right] \\ &= \sum_{i=0}^{N-1}e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[\sum_{b=0}^{s-1}g(i,sj+b)e^{\frac{-2\pi bk_{i}\sqrt{-1}}{SN}}\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right] \\ &+ \sum_{i=0}^{N-1}e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[\sum_{b=0}^{s-1}g(si+1,sj+b)e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{N}}\right] \\ &\cdots \\ &+ \sum_{i=0}^{N-1}e^{\frac{-2\pi i(si+s-1)k_{i}\sqrt{-1}}{SN}}\left[\sum_{j=0}^{N-1}\left[\sum_{b=0}^{s-1}g(si+s-1,s)\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right]e^{\frac{-2\pi ik_{i}\sqrt{-1}}{SN}}\right] \end{split}$$

2. $G(k_i, k_j) = \{0, 1, \dots, N-1\}$ $g_l(i, j), i, j \in \{0, 1, \dots, N-1\}$ $G(k_i, k_j) = \{0, 1, \dots, N-1\}$ $g_l(i, j), i, j \in \{0, 1, \dots, N-1\}$ $g_l(i, j), i, j \in \{0, 1, \dots, N-1\}$ $g_l(i, j), i, j \in \{0, 1, \dots, N-1\}$

$$\begin{split} G\left(k_{i},k_{j}\right) &= \sum_{i=0}^{N-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \sum_{a=0}^{s-1} e^{\frac{-2\pi a k_{i}\sqrt{-1}}{sN}} \left[\sum_{j=0}^{N-1} \left[\sum_{b=0}^{s-1} g(si+a,sj+b) e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right] e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \right] \\ &\approx \sum_{i=0}^{N-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \sum_{a=0}^{s-1} e^{\frac{-2\pi a k_{i}\sqrt{-1}}{sN}} \left[\sum_{j=0}^{N-1} \left[\sum_{b=0}^{s-1} g_{l}(i,j) e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right] e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \right] \\ &= \sum_{i=0}^{N-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \sum_{a=0}^{s-1} e^{\frac{-2\pi a k_{i}\sqrt{-1}}{sN}} \left[\sum_{j=0}^{N-1} \left[g_{l}(i,j) \sum_{b=0}^{s-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right] e^{\frac{-2\pi i k_{i}\sqrt{-1}}{N}} \right] \\ &= \left(\sum_{a=0}^{s-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right) \left(\sum_{b=0}^{s-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right) \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} g_{l}(i,j) \\ &= \left(\sum_{a=0}^{s-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right) \left(\sum_{b=0}^{s-1} e^{\frac{-2\pi i k_{i}\sqrt{-1}}{sN}} \right) G_{l}\left(k_{i},k_{j}\right), k_{i},k_{j} \in \left\{ -\frac{N}{2}, -\frac{N}{2} + 1, \dots, \frac{N}{2} - 1 \right\} \end{split}$$