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Abstract—UlItrasound image segmentation deep learning still
has performance bottleneck due to an inherent speckle noise
having complex non-Gaussian statistics in the images. Denoised
input data, multi-task segmentation & denoising, and holisti-
cally robust feature learning are three solutions to the speckle
challenge in deep ultrasound image segmentation. To assess
whether denoising (or despeckling) is necessary for ultrasound
image segmentation deep learning in addressing speckle challenge
and improving performance, we review deep learning ultra-
sound image segmentation and denoising as well as establish
an ultrasound image denoising-segmentation cross benchmarking
considering the abovementioned solutions, with the following
core components. Datasets: 4 public ultrasound datasets and 2
self-collected datasets. Despeckling methods: 7 typical despeck-
ling methods, such as non-local means and diffusion methods.
Basic models: U-Net [1], SK-U-Net [2], and CE-Net [3] for
segmenting breast ultrasound images, and U-Net and DAEFF-
Net [4] for echocardiography. Multi-task model: SFS block [5]
for segmentation and despeckling feature fusion. Heuristically
speckle-robust models: residual feedback & refinement network
RF-Net [6] and transformer-assisted CNN network CDM [7].
We eliminate the nondeterminism effect [8], [9] in the deep
learning model training via deterministic training or averaging 30
repeated training runs. We conduct comprehensive experimental
evaluations in both intra- and cross-dataset testings in terms
of segmentation evaluation metrics and statistical analysis with
the Friedman test and two paired tests. We demonstrate that the
performance improvement from denoising pre-processing is more
unstable and slighter (if exists) 6nsti7583ce challenge
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Fig. 1: Research directions for deep learning based ultrasound image segmentation. For the sake of brevity, we denote the
references for corresponding topics in the form of numbers in the bracket. Deep learning based segmentation model:
segmentation building blocks (1) [19], [20], RNNs (2) [21], GNNs (3) [22], attention (4,5) [23], [24], Transformer (6,7) [25],
[26], multi-scale (8,9) [27], [28], boundary correction block (10,11) [6], [29]; architecture, Encoder-Decoder (12) [1], detection
based segmentation architecture (13-15) [19], [27], [30]-[35], generative models (16) [36]. Loss function: segmentation task
oriented (17,18) [37], [38]; generative models oriented (16) [36]; supervision strategies oriented (19,20) [39], [40]; transfer
learning oriented (21-24) [41]-[44]; disentangled representation oriented (25) [45]. Training strategies: data augmentation
(26-28) [46]-[48]; supervision strategies (19,20) [39], [40]; transfer learning (21-24) [41]-[44]; disentangled representation

learning (25) [45]; curriculum learning (29) [49].

learning scenarios with different anatomical sites, imaging
settings, supervision strategies, and dataset sizes.

To the best of our knowledge, no previous research has
applied multi-task denoising-segmentation deep learning for
segmentation purpose in ultrasound image analysis. Xie et
al [58] applied the main task of denoising to preserve reti-
nal structural information, where auxiliary segmentation task
provided retina-related region information. Huang et al. [5]
applied multi-task denoising-segmentation for segmentation
purpose, where the scan noise — generated from moving 2D
scanning, 3D formation and anatomical plane projection —
is significantly different from the non-Gaussian statistics of
speckle noise.

Regarding the holistic deep learning ultrasound segmenta-
tion that inherently reduces speckle noise, some state-of-the-
art methods have designed speckle noise resistant framework
based on holistic and heuristic rules about deep learning
model, loss function, and training strategy. For example,

Wu et al. [7] assumed that within- and cross-image long-
range dependency modeling can extract consistent feature to
alleviate noise disturbance. Observing that speckle noise and
heart motion in echocardiography video make the inter-frame
correspondence problem worse for the video segmentation, Wu
et al. [18] designed context-aware U-Net encoders to extract
feature map from 3 consecutive frames, while also designing
spatiotemporal semantic calibration and bi-directional fusion
modules to align the feature maps of consecutive frames
for speckle-mitigating correspondence calculation. However,
the overall robustness of segmentation performance cannot
be explicitly credited to any denoising solutions, and it re-
mains uncertain whether the segmentation performance can
find potential rooms for further improvement if applying
denoising with the other two solutions due to the lack of
denoising-segmentation cross benchmarking, that is exactly
the purpose of this work. We therefore explore the differences
of segmentation performance among denoising pre-processing,
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multi-task denoising-segmentation, and holistic deep learning
segmentation framework to demonstrate whether denoising
is necessary in segmentation performance improvement. This
work has a fourfold contribution:

(1) We review deep learning ultrasound image segmentation
and denoising methods in a holistic view, covering all possible
combinations between the denoising-segmentation deep learn-
ing frameworks for the challenge of complex speckle noise.

(2) To the best of our knowledge, this is the first compre-
hensive denoising-segmentation cross benchmarking for ad-
dressing speckle noise in deep ultrasound segmentation. This
benchmarking has concluded that denoising pre-processing
brings unstable and slight (if exists) performance improve-
ment to the downstream task of deep learning ultrasound
segmentation, and we recommend to regard it as a kind of
deep learning hyper-parameter, which should be checked in
clinical application to judge its real effect on segmentation.
While multi-task denoising-segmentation [5] actually results
in a segmentation performance degradation, which may be the
limitation of the cross-task gap that is possibly generated from
the different context reasoning and input-output workflows in
generalization or domain transfer.

(3) The holistic deep leaning ultrasound segmentation
framework, including elaborate segmentation building blocks
such as attention mechanism, transformer, and multi-scale
mechanism, have been proved to effectively explore the con-
textual information and simultaneously reduce speckle noise in
deep segmentation. Furthermore, the effectiveness of an intrin-
sic boundary correction with contextual perception in a holistic
design, has been verified by experiments in our denoising-
segmentation cross benchmarking. The context-aware holistic
segmentation design with self-correction is much more evident
and stable in superior performance improvements than the
denoising pre-processing and multi-task denoising & segmen-
tation.

(4) Acknowledging the performance improvement brought
by an inherent denoising in semi-/weakly-/un-supervised deep
learning, we recommend the proposed denoising-segmentation
cross benchmarking to select denoising strategies in these
cases. It should be noted that semi-/weakly-/un-supervised
training might be far from clinical application, potential in-
vestigation should allow the recurrent emergence of context-
aware generalization for a variety of heterogeneity in holistic
deep learning.

Il. ULTRASOUND IMAGE SEGMENTATION DEEP LEARNING
FRAMEWORK

To tackle the challenges of multiplicative speckle noise,
low-contrast features, ambiguous boundaries, and structural
variations (see the challenge column in Table I), deep learning
based ultrasound image segmentation is designed to learn
robust feature representations via deep learning model and
loss function as well as training strategy (see Figure 1) for
enhancing segmentation performance. The whole procedure
of deep learning training has been drawn on the left of Figure
1. Specifically, given a label-guided optimization [48], [62]
loss function, the deep learning model can be updated to learn

feature representations from the input data for an optimized
output segmentation performance [40]. The training strate-
gies are designed for better performance, training efficiency,
generalization, stability, or interpretability. We additionally
list out representative breast ultrasound and echocardiography
segmentation algorithms in Table | according to ultrasound
segmentation challenges and our review taxonomy.

A. Deep Learning Model

From the perspective of deep learning training, deep learn-
ing model is expected to extract and combine global semantic
features and local detailed features appropriately for contextual
understanding to get fine segmentation results [19], [20], [27],
[28], [77]-[82]. We decompose the deep learning segmen-
tation model into segmentation building blocks and overall
segmentation architecture. The segmentation building blocks
extract features, while the overall segmentation architecture
coordinates the extracted features to produce the final output.

1) Segmentation Building Blocks: Segmentation building
blocks, including convolutional neural networks (CNNs), re-
current neural networks (RNNs) [21], graph neural networks
(GNNS5s) [22], attention mechanism [4], [17], [63]-[67], trans-
former [25], [26], and multi-scale mechanism [19], [83], are all
designed with certain inductive bias [84]. CNNs are the most
basic segmentation building blocks that apply local convolu-
tion in sliding windows, resulting in computational efficiency,
local-space-invariance, grid spatial relationship modeling and
training data efficiency. Compared with CNNs, other blocks
introduce better segmentation oriented features from long-
range dependencies, graph relationship, attention-selection and
multi-scale combination.

RNNSs capture sequential data dependencies by utilizing
memory and hidden states in feedback connections [21]. Three
typical ways of applying RNNs to image segmentation are:
1) organizing image information in a sequential order, such
as associating intermediate feature grid points [85], encoding
neighbouring patch relationships [36], or utilizing natural slice
connections in 3D data [87]; 2) progressively optimizing RNN-
based deep latent feature representation in multiple segmenta-
tion rounds [49]; and 3) constructing interaction/aggregation
of multi-scale feature maps with ConvLSTM/GRU [88], [89].
The broad meaning of “recurrent” can be extented to feedback
segmentation refinement without RNNs [6].

GNNs [22] process graph data that is composed of nodes
and edges as well as initial node features in medical image
segmentation by representing anatomical structure associations
[71], [90], [91]. The node comes from initial mask [71],
intermediate convolutional features [90], [92] or VAE latent
distribution [91]. The edge is related to spatial distance [93]
or self-attention relationship [94]. The role of GNN building
block varies in the architecture, for example, completely
utilizing graph and GNNs in decoder for feature representation
and output representation [91], adding a GNN module for
supplementary bottleneck feature [92], or adding a graph
convolutional network based boundary rendering to further
improve the segmentation accuracy by vertex adjustment [71].

As an effective approach for brain-like contextual under-
standing, attention mechanism [4], [17], [63]-[67] dynamically
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TABLE I: Summary of deep learning based ultrasound segmentation challenges and methods. Segmentation challenges consist
of the presence of multiplicative speckle noise, low-contrast features, ambiguous boundaries, structural variations, limited
annotation, domain-gap, and etc. Attention mechanism [4], [17], [63]-[67], transformer [7], [16], multi-scale mechanism [17],
] are hypothesized to reduce speckle noise effect. Boundary/residual correction and refinement [6], [17], [71] is popular
in breast ultrasound segmentation, while motion-enhanced representation [72], [73] and multi-analysis task-aware learning are

(e8]

popular in echocardiography segmentation [66], [67], [72], [73].

Reference

Wang et
al. [6]

Wuetal.
[

Xue et

al. [17]

Chen et
al. [63)

Chen et
al. [74]

Huang
et
1

al.

Ning et
al. [15)

Zhou et
al. [64]

Dimension

2D

2D

2D

2D

2D

2D

3D

Anatomy

breast

breast

breast,
prostate

breast

pneumonia,
CovID-

19,  breast
tumour

breast

breast

breast

Challenge
(1)  missing/ambiguous
boundaries, speckle noise
(2) large lesion variety
(3) significant individual
differences
(1) lesion variations
(2) ambiguous boundaries
(3) speckle noise and
artifacts

(1) speckle artifacts

(2) blurry boundaries

(3) inhomogeneous inten-
sity distributions

(1) similar intensity distri-
butions

(2) variable morphologies
(3) blurred boundaries
(4) irregular shapes

ImageNet pre-training has

domain gap with medical
training.

(1) blurry or occluded
edges

(2) irregular
shapes

(1) pattern complexity
(2) Similar foreground-
background intensity

(3) low-contrast features
and blurry boundary

(4) lesion shape and posi-
tion variations

nodule

(1) tumour shape and size
variations

(2)  uncertain
locations

(3) blurry boundary, low
signal-to-noise ratio

(4) speckle noise and
artifacts

tumour

Hypothesis/Idea

a novel residual feed-
back network by learning
residual representation of
hardly-predicted pixels

within- and cross-image

long-range  dependency
modeling

long-range non-local de-
pendencies and boundary
detection

adaptive attention

Self-supervised ~ medical
models are highly

transferable.

Boundary is important for
automated BUS nodule
segmentation.

background-salient
representations for
assisting foreground
segmentation

tumour location informa-
tion is essential

Deep learning model

a novel residual feedback network
residual representation module
residual feedback transmission strategy

two parallel encoders: CNN and
Transformer
bottleneck: a cross-image dependency

modeling module

multi-scale ASPP bottleneck

global guidance block, spatial and channel
attention

boundary detection module on encoder
CNNs

channel&spatial ~ adaptive  self-attention
module for all convolutional blocks

feature  extraction
ShuffleNet-v2)
meta-weighting network

Mask  R-CNN for finetune:
tion/segmentation heads
Multi-scale ASPP bottleneck
boundary selection module
graph  convolutional-based
rendering module

encoder  (ResNet,

classifica-

boundary

foreground'\background saliency maps
U

Loss function

seg: iou loss of initial segmentation
958 O I

Training Strategy

and d ided segmentation,

g
bee loss of residual representation

seg: bee+dice
model: cross-image dependency
Loss

seg: bee+dice
model&seg: mse loss of boudary
map

seg: bece

self-supervision: contrastive loss,
weighted InfoNCE loss
meta-learning loss

seg: cross entropy, point Cross-
Entropy, L2 point matching loss

seg: bee+dice
model/multi-task: shape-related

loss in

U
straight middle path, isted
fusion unit, shap unit, edg

unit and position-aware unit

3D Mask R-CNN head for tumour location

-Net
Cross-model attention mechanism in skip-
connection layers
aggregate Mask R-CNN location to V-Net
feature level

hap unit

transforming based data augmentation
transfer learning: pretrained CNN & trans-
former encoder backbone

transforming based data augmentation
transfer learning: pre-trained ResNext back-
bone; multi-task of segmentation and
boudary detection

not mentioned

contrastive learning
well-designed transforming based _ data
augmentation, in geometric, clolor and

mixup

data_augmentation: intensity jittering and
flipping

multi-task: region segmentation and bound-
ary selection

not highlighted
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adjusts feature weights to highlight salient features and ignore
irrelevant ones [23], [24]. According to the weighted targets,
attention mechanism in image segmentation can be categorized
into spatial attention that selects attentive regions, channel
attention that selects useful feature channel [95], and hybrid
attention. SK-U-Net [2] added channel attention alike SENet
[95] after convolutional blocks in the encoder for better breast
tumour segmentation with fewer model parameters. DAEFF-
Net [4] used additional path of ECA module [96] based
channel attention in feature extraction module and spatial
attention for selective high- and low-level feature fusion for
paediatric echocardiographic segmentation. Considering the
low signal-to-noise of echocardiography and stronger feature
coherence of local pixels than global pixels, PLANet [65] pro-
posed pyramidal multi-head local attention module to enhance
neighbouring feature while accommodating size variability.
DSCG-Net [97] included a scale-based spatial attention to fuse
multi-level features extracted by the encoder, and connected a
centerline heatmap reconstruction side-branch network to the
end of the encoder for increasing the network generalization
in segmenting the common and internal carotid arteries.

Self-attention mechanism [98] characterizes the pairwise
embedding correlations of all positions in a sequence (such
as text, image patch, audio) to calculate weighted better em-
bedding features. It is formulated as a weighted query mapping
from key-value pairs to an output. It can be applied as a kind of
spatial attention in image segmentation tasks, for example, Wu
et al. [99] designed a non-local block for long-range depen-
dency modeling in computer vision applications. Originated
from self-attention, transformer has become a popular deep
learning building block [25], [26]. Compared with CNNSs,
transformer can capture better long-range dependencies. On
the other hand, however, it needs more training data to learn
potential rules due to the weak inductive bias. Researchers in
medical image segmentation have turned the research direc-
tions from pure transformer to the combination of CNNs and
transformer as well as from transformer-based fully supervised
training to transformer based pre-training [25], [26]. For
example, Wu et al. [7] utilized parallel CNN&transformer
encoder and a cross-image dependency modeling module for
within- and cross-image long-range dependency modeling for
breast ultrasound segmentation. Zhao et al. [16] constructed
interactive fusion and learning between local convolution
features and global transformer context information for key
point locating in pediatric echocardiographic.

Multi-scale blocks collect long-range multi-scale dependen-
cies and propagate local geometric contextual information
through parallel pooling and atrous convolution of different
scales in different deep intermediate layers [17], [19], [27],
[28], [68], [70] as well as parallel encoder [69]. Specifically,
atrous spatial pyramid pooling (ASPP) embedded the global
contextual information in deep convolutional neural networks
for semantic image segmentation [83]. CE-net [3] added an
inception structure with multi-branches of astrous convolutions
and a pooling block with multi-kernel of different sizes in the
bottleneck, enlarging the receptive field and encoding global
context information. An unsupervised multi-scale shape-aware
strategy [100] captured long-range relationships in the high-

order statistics that measure the joint distribution of classes
at relative positions corresponding to different orientation and
distances in cross-domain image segmentation. MDF-Net [70]
employed a two-stage architecture with a multiscale feature
selection sub-network and a structurally optimized refinement
sub-network, mitigating speckle noise and inter-subject vari-
ation via better feature exploration and fusion. Multi-scale
semantic features in the different intermediate layers can be
further refined by attention [17], graph representation [71] or
joint alignment of cross-domain invariant information [100],
and then be received at decoder to progressively recover geo-
metric details from the interaction of rich but noisy contexts
for the fine segmentation.

Recently, uncertainty-based boundary correction or bound-
ary edge refinement [29], [101]-[103] with context perception
is proposed to address the high ambiguity of object boundary
representation and the high variability of poor ultrasound
image quality. By exploiting dynamic boundary preservation
block to predict a key boundary point (KBP) map [102]
for enhancing the semantic features from images, SCCNet
[29] proposed an iterative training strategy to update the
importance value of the KBP map for U-Net training and use
a weighted cross-entropy loss to give more attention to the
KBP. A context module also incorporated a class-level context
using the predicted segmentation map to construct a dynamic
multi-scale filter with adaptive kernel weights for more con-
textual perception in discriminating similar objects. RF-Net
[6] incorporated a novel residual representation module to
grasp the residual characteristics of the ambiguous bound-
aries and perplexing regions. This incorporation facilitates the
network in directing increased attention towards the pixels
that are challenging to predict. SABR-Net [103] addressed
the missing and ambiguous boundaries in the contexts of
shadow artifacts via semi-supervised shadow-aware network
with boundary refinement, by adding shadow imitation regions
to the original images and design shadow-masked tranformer
blocks to perceive missing anatomy. A densely connected
3D pyramidal dilated convolutuion network [104] is proposed
with sequential cross-frame uncertainty guidance to exploit
the longitudinal information and perceive size-varied vessel
regions for intravascular ultrasound sequence segmentation.
All of these boundary correction schemes can explore the
transcending boundary edge contextual information to filter
out the unreliable boundary or edge predictions in intermediate
feature maps and multi-scale consistency segmentation.

2) Architecture: We categorize the architectures into
Encoder-Decoder architecture [19], [20], [27], [28], detection-
based segmentation architecture [19], [27], [33]-[35] and
generative models based architecture [47].

(a) Encoder-Decoder architecture [19], [20], [27], [28].
As the most popular segmentation architecture, the Encoder-
Decoder architecture first encodes the input data into the latent
feature, and then decodes the latent feature into the output
segmentation mask.

The abovementioned segmentation building blocks can be
interconnected flexibly within the Encoder-Decoder architec-
ture. A classic CNN example of an Encoder-Decoder architec-
ture is the U-Net [1], which is comprised of convolutional neu-
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ral networks, pooling/upsampling layers, and skip-connection
layers. U-Net stands out as the most widely adopted biomedi-
cal segmentation model due to its versatility and simplicity
[771, 179], [80], [105]-[107]. Other segmentation building
blocks in the preceding sub-section except CNNs are often in-
corporated into U-Net-like networks to enhance performance.
For example, DAEFF-Net [4] with attention mechanism, CE-
Net [3] with multi-scale mechanism, and CDM [7] with both
CNN and transformer encoders.

Moreover, there are also modifications to add elaborate
structure-level elements and holistically connect them to ba-
sic U-Net structure. For example, RF-Net [6] designed two
sequential U-Net with recurrent initial segmentation residual
representation and feedback transmission to enhance the seg-
mentation confidence of missing/ambiguous boundary pixels
with uncertainty rectification. SMU-Net [15] designed two
parallel U-Net shaped paths and a straight middle path to
additionally utilize background saliency maps as input to
improve foreground segmentation performance.

(b) Detection-based segmentation architecture [19], [27],
[33]-[35]. Different from the Encoder-Decoder architecture,
detection-based segmentation architecture explicitly integrates
the procedures of detection and segmentation. As two-stage
framework, Mask R-CNN [30] firstly regressed the object
boundary box through Faster R-CNN, and then added a
segmentation branch. In Mask R-CNN based medical image
segmentation, Lian et al. [108] detected anatomical parts
and diseases proposals and then mined structure-aware re-
lationship for the detection and segmentation of thoracic
diseases. Ding et al. [109] improved the Mask R-CNN ar-
chitecture for ultrasound nerve segmentation through multi-
scale mechanism, attention mechanism, and upsampling skip-
connection. Furthermore, box annotations [35] are required
as coarse mask generation for pseudo mask labels in weakly
supervised instance segmentation, then these labels are utilized
as training samples for the self-training instance segmentation
stage. As one-stage frameworks, PolarMask [31], [110] via
polar coordinate and contour proposal networks [32]-[34] via
contour modeling utilized the regressed shape representation
for the simultaneous object detection and segmentation. Com-
pared with the Encoder-Decoder segmentation architecture,
detection-based segmentation under the guidance of region
proposal and shape representation are more computationally
efficient, suitable for instance segmentation, and beneficial for
context relationship expression, while the Encoder-Decoder
segmentation architecture has the advantage of fine segmenta-
tion.

(c) Generative model architecture [36], [47]. Different
from the above discriminative models that directly characterize
the conditional probability P (Y jX = x), where X is the
observable variable, Y is the target variable, and x is an
observation, generative models formulate the joint data prob-
ability distribution P (X;Y ), with the advantage of better task
understanding and uncertainty expression [36], [47]. In regard
to the taxonomy and principle of generative models, we refer
the readers to [36]. Generative adversarial networks consist
of a generator for distribution formulating and a discriminator
for reality judgement. The key is to guide the weight updating

of the generator for representative features under the feedback
from the discriminator. Ruan et al. [111] and Mahmood et
al. [112] used adversarial training to distinguish tumours
from cysts and distinguish overlapped nuclei, respectively.
Diffusion model [113] is very popular recently, including
noise adding based forward diffusion and denoising based
backward diffusion. Wu et al. [114], [115] applied diffusion
model with denoising effective network designs into medical
image segmentation and achieved state-of-the-art performance.
Compared with discriminative models, generative models in-
corporate more comprehensive distribution and can generate
new data to assist target tasks, while discriminative models
extract more practical features.

B. Loss Function

Loss function in deep learning characterizes the difference
between the predicted result and the expected ground truth /
state, and then the difference is minimized by updating the
deep learning model parameters through the back-propagation
algorithm, resulting in meaningful feature representation.

The basic segmentation-task oriented loss functions consist
of region based losses (such as dice coefficient loss and
intersection over union loss), distribution based loss (such as
cross-entropy loss and focal loss), boundary based loss, and
compound loss [28], [37], [38]. For boundary loss functions
for better boundary segmentation performance, Kervadec et al.
[116] designed a differentiable integral of non-symmetric Lo
distance metric over the contours, while Du et al. [38] paid
attention to the boundary pixels gotten through dilation and
erosion operations in the similar form of dice coefficient loss.
Region based, distribution based and boundary loss functions
can be easily combined together to form compound loss
function. We refer the readers to [37] for more details about
medical segmentation losses.

The deep learning model design and training strategies
might interact with the loss function to achieve a holistic
segmentation design. Generative models introduce the adver-
sarial loss in generative adversarial networks, and the noise
prediction loss in diffusion models. Semi-supervised learning
introduces the consistency loss, while unsupervised learning
utilizes clustering loss, reconstruction loss, or contrastive
loss [39], [40]. In transfer learning, multi-task solution [43]
might simultaneously utilize segmentation and classification
loss function, while domain adaption tries to minimize the
domain gap between the source domain and the target domain
through loss function such as maximum mean discrepancy
[44]. In disentangled representation learning, loss function,
such as latent regression loss [45], can be used to improve the
latent representation. Further, due to their complexity, domain
adaptation and disentangling representation learning involve
different aspects of deep learning, such as generative models,
segmentation task and semi-/self-/un-supervised strategies, to
boost their performance, and thus use combined loss functions.
In these cases, it is important to balance various loss functions
to get good model performance.
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C. Training Strategies

Training strategies are designed for better performance,
training efficiency, generalization, stability, or interpretability.
Considering the focus and length of the paper, we simply
mention the multi-task learning. Multi-task learning jointly
learns related tasks to extract task-shared features and improve
task-specific features, improving efficiency, generalization and
performance of the target task or all tasks [42], [43]. To
achieve the multi-task feature learning, the model architecture
defines the information flow according to the connection order
of task structures, and the architectures can be categorized
into cascaded, parallel, interacted and hybrid [43]. We refer
the readers to [42], [43] for detailed information. We have
introduced related works of multi-task learning of ultrasound
denoising and segmentation in the Introduction.

Some other training strategies are marked in Figure 1. We
refer the readers to corresponding references in Figure 1 for
detailed knowledge.

D. Summarization

Typical ultrasound breast and echocardiography segmenta-
tion algorithms are summarized in Table I. It can be seen
that many works hypothesized that deep learning segmen-
tation framework can reduce speckle noise effect. Holistic
segmentation building blocks, including attention mechanism
[4], [171, [63]-167], [7], [16], multi-scale mechanism [17], [68]
are the most popular strategies. Moreover, boundary correction
and refinement [6], [17], [71] is popular in breast ultrasound
segmentation, while motion enhanced representation [72], [73]
and multi-task learning (chamber-view classification, quantifi-
cation, uncertainty estimation) [66], [67], [72], [73] is popular
in echocardiography segmentation.

Table | additionally show challenges and solutions to labeled
data limitation [39], [68], [75], uncertainty estimation [67],
[117] and label coherence [65], [118]. While not extensively
examined in this work, they are also hot topics in deep learning
ultrasound segmentation.

I11. ULTRASOUND DENOISING

denoising methods can be classified into four main cate-
gories [119]-[123]: spatial domain filtering, transform domain
filtering, deep learning filtering, and hybrid methods. Spatial
domain filtering includes local adaptive, non-local means
(NLM), PDE (partial differential equation), and total variation
(TV) based methods. All of these abovementioned denoising
methods are summarized in Table II.

A. Spatial Domain Filtering

(a) Local adaptive filtering. Local adaptive filter rectifies
a pixel referring to local statistics, including weighted average
value [124], [144], [145], median value [125] and extreme
value [126]. These filters have the advantage of simple prin-
ciple and fast speed, but the performance heavily depends on
local window size.

(b) Non-local means filtering. Different from the lo-
cal filters that focus on local similarity, NLM utilizes self-
similarity in a larger window. Measured as Euclidean intensity

distance between reference blocks and the selected block, self-
similarity measure is used to perform a weighted average
among central pixels of reference blocks to obtain the new
intensity for the central pixel of the selected block [127].
Optimal Bayesian NLM (OBNLM) [128] introduces NLM for
ultrasound denoising by designing a new similarity measure
called Pearson distance. OBNLM can well preserve structural
information with suitable parameters, but it has relevant limi-
tations when dealing the problems of high computational cost,
optimal parameter selection and imperfect similarity measure-
ment. To improve OBNLM'’s similarity measure, Zhan et al.
[129] refined common distance through principal component
analysis. To tackle bias due to speckle noise, Sudeep et
al. [130] proposed an unbiased NLM method that estimated
and subtracted independent bias signal using the maximum
likelihood method. According to [123], the groundbreaking
NLM principle has stimulated important progress by being
integrated with transform domain based or TV based methods.

(c) PDE and TV based methods. Spatial domain method-
ology has seen an increasing research attention and dominant
performance improvement from PDE-based methods [131],
[133]-[135], [146] and TV [135], [147], [148] methods. PDE-
based methods mainly apply the anisotropic diffusion (AD)
[131], [133], [134], [146] under the guidance of diffusion
coefficients [131], encouraging internal diffusion in similar
regions and inhabiting interaction between different regions.
The diffusion coefficient consists of three parts, boundary edge
information, noise information and a non-negative decreasing
function, keeping a balance between edge preservation and
noise removal. Various AD-based denoising methods have
been proposed by implementing different edge detection and
detail-preserving strategies. The edge and noise information of
classical AD methods has been shown in Table I1. Specifically,
Gabor-based anisotropic diffusion method [146] exploited
Gabor transform to detect tissue edges and enhance the dis-
crimination between the edges and the noise for improving
the diffusion and despeckling performance. Sudeb et al. [134]
represented edge information in another PDE-based method,
which injected the past edge information into the diffusion and
preserved fine features. TV based methods mainly focus on
fidelity term and regularization term [135] to use smooth and
regularization prior. Mei et al. [50] utilized phase congruence-
based edge significance measure called phase asymetry to
adaptively detect edge features, and integrated AD with TV in
order to leverage the strengths of AD in homogeneous regions
and TV in the proximity of features. All of these AD methods
have relatively low computational cost and perform well at
low-to-moderate noise levels, but some of them may fail in
noise reduction at high noise levels, especially on noisy edges
with small diffusion coefficient.

B. Transform Domain Filtering

Transform domain filtering uses various basis functions to
represent ultrasound images, in which wavelet based methods
are the most widely explored [123], and the core idea is to
remove the noise-related coefficients in transform domain, for
example, by the means of thresholding methods. For detailed
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Category

Local adaptive filtering

Non-local means filtering

Basic principle

Rectifies a pixel referring to
local statistics
based on local similarity.

Updates pixel by
performing weighted average
on the center pixels of
non-local blocks

with self-similarity measure.

Examples
Lee [124]
Loupas et al. [
Tay et al. [
NLM [

1
1
1

Weighted average value
Median value
Extreme value
The original NLM work

TABLE Il: Summary of the abovementioned denoising

Description

methods.

Advantage

Simple principle
and fast speed

NLM stimulates
important progress.
OBNLM can

well preserve
structur-8.96606preserve

Disadvantage

The performance
heavily depends on
local window size.



SUBMITTED TO PROCEEDINGS OF THE IEEE

It’s difficult for a trained denoising model to adapt to the
scenarios of different noise levels. In scenarios of low noise
level, challenge mainly lies in feature preservation especially
in edge detail preservation; while for a high noise level
scenario, challenge lies in both noise reduction and feature
preservation. To adapt to different scenarios in different noise
levels, some methods add different levels of artificial noises to
the training data [139], [156], while Lan et al. [137] trained
different models for different noise levels, and when tackling a
new speckled image, they firstly estimated the noise level and
then selected corresponding model for denoising. In a more
integrated way for an addictive Gaussian noise, Soh et al. [140]
utilized noisy image’s prior from variational auto-encoder to
facilitate image restoration at different noise levels. Due to the
non-symmetrical and spatially correlated characteristics of the
speckle noise [61], modeling the non-Gaussian speckle noise
circumstances at different noise levels is a very challenging
topic that is not touched in existing deep learning models.

Once trained, deep learning based denoising can be fast,
however, the model training is relatively complex, and as
mentioned above, the final performance is greatly affected by
training data and treatment measures of different noise levels.

D. Hybrid Denoising Methods

The advantages and limitations of all abovementioned de-
noising methods have been summarized correspondingly. Hy-
brid methods combine different methods to synthesize differ-
ent advantages and overcome corresponding limitations [53],
[148]. Karamjeet et al. [157] successively utilized the local
and non-local filters to achieve a better performance trade-off
between noise reduction and feature preservation. Gilboa et
al. [158] combined non-local operators with TV to improve
the texture preservation ability of PDE based methods, which
was introduced to tackle multiplicative speckle noise using
split Bregman iterations in [141], [159]. As a milestone of
denoising, BM3D [142] and SARBM3D [143] combined non-
local block matching with transform domain thresholding for
a first denoising, and then used the Wiener filter based on the
matching result of the first step to recover feature details. Deep
learning denoising models that combine traditional denoising
with deep learning knowledge for detail-preserving domain
adaptation have been introduced in Section III-C. Hybrid
denoising methods can achieve better denoising performance
with a high computational cost.

We refer the interested reader to a broad view of Gaussian
noise based image filtering, image synthesis and regularizing
general inverse problems in survey work [150]. However,
handling non-Gaussian speckle noise removal and image seg-
mentation in a holistic view is still underexplored.

IV. MATERIALS AND METHODS

In this section, we describe the datasets, denoising method,
deep learning based segmentation framework, training setup,
segmentation metric [160], and statistical analysis for our
experiments about the denoising effect of deep learning based
ultrasound image segmentation.

TABLE IlI: Dataset size and dataset split

Amount of

Amount of Amount of

Dataset training images  validation images  testing images Ratio for split
Dataset 1 378 126 126 :2:
Dataset 2 147 16 None 10-folder cross-validation [54]
Dataset 3 14930 2576 2554 5.86:1:1 [163]
Dataset 4 962 324 312 6:2:2

A. Datasets

According to [13], [14], ultrasound imaging is used to
examine many body parts, such as breast, prostate, heart, liver,
nerve, fetus, and so on. Considering efficiency, reproducibil-
ity, and the lack of public ultrasound datasets, we choose
two representative applications, breast ultrasound imaging
and echocardiography imaging. In this way, our experiment
is based on four public and two self-collected ultrasound
datasets. Following are detailed descriptions.

1) Dataset 1: a breast dataset, BUSI* [161], collected in
Baheya Hospital with LOGIQ E9 and LOGIQ E9 Agile.
Images with one tumour delineated are used in our work.

2) Dataset 2: a breast dataset, Dataset B? [162], collected
from the UDIAT Diagnostic Centre with Siemens ACUSON
Sequoia C512 system and 17L5 HD linear array transducer.

3) Dataset 3: a big dataset of echocardiography videos,
Echodynamic® [163], collected from Stanford University Hos-
pital with a resolution of 112 112. As with [163], we mixed
end-systolic and end-diastolic frames in both training and
testing.

4) Dataset 4: an echocardiography dataset, Camus®* [164],
collected from the University Hospital of St Etienne with GE
Vivid E95 ultrasound scanner and GE M5S probe and with a
resolution of 512  512. As with [164], our experiment uses
good and medium quality cases, but excludes poor cases. We
segment the left ventricle endocardium. We mix four-chamber
and two-chamber frames, as well as end-systolic and end-
diastolic frames.

5) External Datasets for Test: We additionally collected
115 echocardiography images from the center for cardiovas-
cular medicine of Shanghai chest hospital in Shanghai city and
47 breast ultrasound images from Haimen district traditional
Chinese medical hospital in Nantong city of Jiangsu province
for external cross-dataset testing.

Detailed dataset split of Dataset 1-4 for training, validation,
and testing is shown in Table II1I.

B. Ultrasound Denoising

As mentioned in the Section Ill, thousands of denoising
methods can be grouped into four main categories and to-
tally six categories. Due to the impracticality of testing all
denoising methods individually, we selected one or two repre-
sentative methods with public source code for each category.
Specifically, we choose Lee’s filter (Lee) [124], optimized
Bayesian non-local means (OBNLM) [128], detail-preserving
anisotropic diffusion (DPAD) [133], phase asymmetry ultra-
sound denoising with fractional anisotropic diffusion and total

Lhttps://scholar.cu.edu.eg/?q=afahmy/pages/dataset
2http://www2.docm.mmu.ac.uk/STAFF/M.Yap/dataset.php
3https://echonet.github.io/dynamic/
4https://www.creatis.insa-lyon.fr/Challenge/camus/
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variation (PFDTV) [50], generalized likelihood estimation
method (GLM) [136] based on wavelet, denoising convolu-
tional neural networks (DnCNN) [165] and block-matching
3-D algorithm for complex speckle noise removal in synthetic
aperture radar (SARBM3D) [143].

Denoising results after necessary parameter tuning are
shown in Figure 2. The parameters in experiments are typically
initialized based on the recommendations of the original
authors in their respective works [166], [167]. Subsequently,
the despeckling results of 20 images on each dataset were
meticulously evaluated by two experienced medical profes-
sionals, who assessed the performance in aspect of speckle
noise removal and detail preservation. Modifications to the
denoising parameters were implemented in accordance with
expert guidance and feedback to optimize denoising perfor-
mance tailored to the specific dataset and

10
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Fig. 2: Denoising results after necessary parameter tuning to avoid artifact. On the left of the figure, a-f represent Dataset 1-4,
external breast ultrasound dataset, and external echocardiography dataset, respectively. And 1-7 represent despeckling results
of Lee, OBNLM, DPAD, PFDTV, GLM, DnCNN, SAR-BM3D, respectively. Lee: window size = 3. OBNLM: M = 7, alpha
=3, h = 0.7, offset = 100. DPAD: (time step and iterations) breast ultrasound datasets, 0.2 and 100; Dataset 3 and external

echocardiography dataset, 0.1 and 30; Dataset 4, 0.02 and 30. PFDTV:

t =0.15, s = 15, k0 = 20, alpha = 1.2, niter = 8. GLM:

threshold factor = 3, window size = 3, decomposition scale = 4. DNCNN: has been described in the context. SAR-BM3D:
number of looks = 1, decomposition level = 3, block(window) size 8 8, search area size 39 39. The right side of the figure
shows absolute difference maps between the despeckled results and original images.

in which, T/F and P/N indicate the amount of pixels which
are predicted consistently/inconsistently with the ground truth
and positive/negative respectively. The combination of T/F and
P/N represents a logical “AND”.

The equations for 95% HD and ASSD are as follows:

95% HD = maxf95%sup (d(x; Y )); 95%sup (d(X;y))g
xeX yey
(x d(x;Y) d(X;y))
ASSD = —— X;Y)+ Xy
Nx + Ny xeX yey
d(x;Y) = infd(x;y)
yey

dOcy) =Jix  yij2
@)
in which, x and y represent single point on the surface
of segmentation mask, X and Y represent the surface of
segmentation mask with many points, nx and ny represent
the amount of points on the surface X and Y respectively, inf
gets minimal value from following expression, and 95%sup
gets 0:95 quantile from following expression.
Surface dice coefficient measures the surface overlap of two
masks at a clinically accepted distance tolerance, which is set
as 1 pixel in our experiments.

F. Statistical Analysis

Friedman test [175]-[177] and Nemenyi post hoc test [177],
[178] are utilized to evaluate the performance difference

among all 8 versions of datasets (the original dataset and 7
despeckled datasets). When Friedman test results in p < 0:05
that indicates a statistically significant difference, Nemenyi
post hoc test will then be run to show the detailed difference. In
Nemenyi post hoc test, if the average rank difference between
two methods exceeds the critical difference, then there may
exists statistically significant performance difference between
the two methods. Friedman test and Nemenyi post hoc test
can be respectively done by scipy.stats.friedmanchisquare’ and
Orange.evaluation.compute_CD?.

Paired t-test and Wilcoxon sign